Neural Networks

(P-ITEEA-0011)

Gradient based optimization methods

Akos Zarandy
Lecture 4
October 1, 2019

Contents

* Recall
* Single- and multilayer perceptron and its learning method

 Mathematical background
 Simple gradient based optimizers
e 1stand 2" order optimizers

* Advanced optimizers

* Momentum
 ADAM

9/30/2019. 2

Recall: Single layer perceptron
y — (D(WT X) . GD\) o :\lljighted

Decision boundary is a hyperplan

Simple training method T (i Wi
Convergence of training was proven 6)/‘ i

Good for making decision in linearly Linear Nonlinear
separable cases f ¢ : °%e
In more complex decision situation .'..‘f,.-':/ .'o:,,,,,/“’

— It turns out to be a toy e 0D ‘

9/30/2019 3

Recall: Multi-layer perceptron

Net(x, W) = @ (w<L><p(L-1> (w(L—l) ¢(2>(W<2)¢(1)(W<1)x))

Can approximate an arbitrary function with .
arbitrary precision |

The same way, it can implement arbitrary
decision boundary

It can be trained even if F (or the boundary
surface) is not known analytically or not even
fully known

— Statistical learning: It is enough to know
equally distributed input/output pairs
The partial gradient of the network can be also

calculated for each weight coefficient or hidden

layer neuron (back propagation)
9/30/2019

@i\(ﬂ

What is learning (training)?

* Given: f’V*
— Definition of the network architecture :)
Stochastic process is a
* Topology process, where we cannot
* Initial weights observe the exact values.
 Activation functions (nonlinearities) In these processes, our
» Training set (x. 2 y) observations. are always
e Goal: corrupted \{Vlth some
random noise.

— Calculation of the optimal weight composition: W,
1. Having a function to approximate
W o 2 MiN||F(x) — Net(x,w)”2 = min _f.._f(F(x) — Net(x,w))2 dx, ...dx,
2. Having a set of observations from a stochastic process

= 2 11
WE,pKt) - min %Z(dk . Net(Xk ,W)) OPTIMIZATION...
W k—1

9/30/2019. 5

Optimization

Given an Objective function to optimize
* Also called: Error function, Cost function, Loss function, Criterion
* Derived from the network topology and the input/output pairs

Function types:

* Quadratic, in case of regression (stochastic process)
1 & 2
Remp (W) = = > (d, — Net (x,)
k=1

* Conditional log-likelihood, in case of classification (classification process)

* The sum of the negative logarithmic likelihood (probability) is
minimized X

O(W) =) —logP(yilxia W)

9/30/2019. k=1 6

Optimizations %
* Here we always minimize the objective function w

— Parametric equation
e X are the variables
* W are the parameters

* Optimization targets to find the optimal weights

W,,; = Min f(x, d, Net(x,w))
goals:
— Acceptable error level

— Acceptable computational time assuming reasonable
computational effort

9/30/2019 7

Mathematics behind: Function analysis

* Assumptions

Conditioning refers to how rapidly a

* Poor conditioning P function changes with respect to
* Conditioning number max|Z- small changes in its inputs.
(Ratio of Eugen values): i.i |4, Functions that change rapidly when
their inputs are perturbed slightly
f (X) — A lx A c R™" can be problematic for scientific

computation because rounding
errors in the inputs can result in
large changes in the output.
(e.g. Matrix inversion)

e Applied functions should be Lipschitz
continuous or have Lipschitz continuous
derivate

X, vy, | £(x)- f(y)| <L|x-Y],

(where:
L is the Lipschitz constant)

9/30/2019. 8

Basic idea of (Eradient Descent

There is a function, where

f(x)
and
f'(x)
can be calculated at any
points, but

f'(x)=0

°* cannot.

F(x)

Negati\)e gradient y

minimum:

X; X

* Therefore the trace of the light blue line is not known.

* We have to start out from one point (say X;) and with an iterative
method, we need to go towards the minimum

9/30/2019.

Basic idea of Gradient Descent

We do not know where the
curve is

We know the value at f (X,)

We know the derivative at X;
(%)
Which way to go?

|dea: follow the descending
gradient!

9/30/2019.

£ (x)

t(x)

¥'(x,)

The fog is too thick! How
will I descend from this
hill?!

v

10

Basic idea of Gradient Descent

Derivative means for small € f(x)

f(x+8)~ f(x) + & f'(X)

therefore

f(x—esign(f'(x)))< f(x)

This technique is called
Gradient Descent
(Cauchy, 1847).

9/30/2019.

tangents

minimum: § '(X) -0

>

X

Optimization goal is to find the f'(X) =0 position.
(Critical or stationary points)

=

Stationary points

* Local minimum, where f'(x)=0, and f(x) is smaller than all
neighboring points

* Local maximum, where f'(x)=0, and f(x) is larger than all
neighboring points

e Saddle points, where f(x)=0, and neither minimum nor maximum

Minimum Maximum Saddle point

9/30/2019. 12

Local and global minimum

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Z | Ideally, we would like
to arrive at the global
minimum, but this

might not be possible. This local minimum performs

poorly and should be avoided.

X
In neural network parameter optimization we usually settle for finding a

value of f that is very low, but not necessarily minimal in any formal sense.

9/30/2019. 13

* |n case of a vector scalar
function

 |n 2D, directional derivatives
(slope towards X; and X,):

Of (%1, %,)

f /ré*“‘x“
/4
of (X, X,)/ x| X
8x/ . ’ /
-

Multidimensional input functions Il

* |n case of a vector scalar function

 Gradient definition in 2D
f:R° >R
VE (% %) = of of
OX, OX,

A vector in the in the X; - X, plane

10/1/2019. 15

Multidimensional input functions lli

 The gradient defines (hyper)
plane approximating the
function infinitesimally at
point X (X4, X5)

AZ = ot (%, %) - AX, +

0%, OX,

10/1/2019.

Multidimensional input functions IV

Directional derivative to an arbitrary
direction u (u is unit vector) is the slope
of fin that direction at point X (X;, X,):

uTVF (X)

Not changing with u X, LN

f decreases the fastest: / f

min u' Vf (x) :UTTiurlluuHZHVf (x)[, cos@

u,u'u=1

u is opposite to the gradient!!!

10/1/2019.

LR Roo w s

minimum at 180

New points towards steepest descent:
X'=x—-eVif(X)

17

Gradient Descent in multidimensional input case =

bt

* Steepest gradient descent iteration
x(n+1) = x(n) — & VI (x(n))

e ¢gisthe learning rate
 Choosing e:
— Small constant

— Decreases as the iteration goes ahead

— Line search: checked with several values, and the 4 Xq
one selected, where f(X) is the smallest

* Stopping condition of the gradient descent
iteration

— When the gradient is zero or close to zero

9/30/2019. 18

Jacobean Matrix

e Partial derivative of a vector =2 vector function
e Specifically, if we have a function f:R"™ — R"

then the Jacobian matrix J e R™"
of f is defined such that: J, . :ai f(x)
T

J

0h O
8.’L‘1 8£Cn
of of
J=|— ... = ! :
0xq oz, . : '
Ofm Ofm
9/30/201 - 8:131 8mn — 19

2"d derivatives ¥

e 2nd derjvative determines
the curvature of alinein 1D

* |InnD, itis described by the
Hessian Matrix

H(f(x)= g 0

Negative curvature No curvature Positive curvature

flx)

f(x)

f(x)=—— f(x) = = - <
OX,OX () OX ;. OX: () N \

= J

e The Hessian is the Jacobian
of the gradient.

9/30/2019 20

I——:

2"d order gradient descent method | \s

« 2nd derivative in a specific direction: u'Hu

 Second-order Taylor series approximation to the function f(x) around

the current point X
0 where:

f(X)=f(x,)+(X=X%,)"g +£(x—xo)T H(x—x,) & gradientatx,
2 H: Hessian at x,

e stepping towards the largest gradient:

Xx—€0=X — X=X,~—¢&(0
f(x)~ f(xo—eg)~f(xo)—eng%engHg

9/30/2019 21

2"d order gradient descent method Il

Analyzing: f(X,—&£0Q)~= f}Xo) —£9'g +%52 g' Hg

N

Original value ~ Expected Correction due to
improvement curvature

When the third term is too large, the gradient descent step can actually
move uphill.

When it is zero or negative, the Taylor series approximation predicts
that increasing € forever will decrease f forever.

In practice, the Taylor series is unlikely to remain accurate for large €, so
one must resort to more heuristic choices of € in this case.

When it is positive, solving for ng

the optimal step & =

9/30/2019 22

Simplest 2" order Gradient descent method: Newton Method

ﬂ%%?ﬂ
FO9 = () + (X=X)VF ()2 (x =X, (X Nk,

. Replacing (X=Xo) = AX' 4n4 differentiating it withAX
assuming that we can jump to a minima, where: Vf(x)=0
O:a%(f(xohAxTVf (xo)+%AxTH(f (xo))ij =V (x,) + H(f (x,))AX

N/
Constant>0 (Ax)' -1 (% (Ax)?)' - Ax

Newton optimization:

Ax =-H(f(X,)) V(%) x(n+1)=x(n)—7H(f(x(n))) " VF(x(n))

10/1/2019 23

Properties of Newton optimization method

 When fis a positive definite quadratic function, Newton’s
method jumps in a single step to the minimum of the function
directly.

 Newton’s method can reach the critical point much faster than
15t order gradient descent.

Newton optimization:

Ax=—H(f (o)) VI (X)) x(n+1) =x(n) —nH(f (x(n))) " VF (x())

9/30/2019 24

Convex and non-convex functions *ﬁff’“

! X

Strongly convex
function:
1 local minimum

9/30/2019.

Non-Strongly convex
function: infinity local
touching minima with
the same values

Starting pt.

Local minima

Global minima

Non-convex function:
multiple non-touching
local minima with

different values .

Local optimization in non-convex case

 Optimizationis done /
local maxima

locally in a certain /
domain, where the /C\ xf
function is assumed to be / /
convex f

* Multiple local
optimization is used to
find global minimum Local minima

Global
minimum

9/30/2019 26

Most commonly applied gradient descent
methods V

* Algorithms with changing but not adaptive learning rate
— Stochastic Gradient Descent algorithm
— Momentum algorithm
* Algorithms with adaptive learning rate
— AdaGrad algorithm
— RMSProp algorithm
— ADAM algorithm
e 2" order algorithm
— Newton algorithm

9/30/2019 N

What are we
optimizing here?

e Cost function in quadratic case for
one X; =2 d; pair:
g = (dl. — Net(xi,w))z Error surface for x, > d. Error surface for X, = d,

The fog is too thick! How
will I descend from this
hill?!

— Error surface is in the W space

— Error surface depends on the
X; = d; pair

— Moreover, we do not see the
entire surface, just

0E When and how to
aw® update the weights?

J JH‘ﬁk"““ﬁb——-7-__;!:_ﬁﬁ»_ﬁk#{///f///(//

10/1/2019 28

€ and the gradients

Update strategies

* Single vector update approach (instant update)
— Weights are updated after each input vector Remember, each

* Batched update approach _approach optimizes
different error surfaces!!!

— All the input vectors are applied

 thisis actually the correct entire error funtion, which is used by the original
Gradient Descent Method

— Updates (Aw;) are calculated for each vector, and averaged

— Update is done with the averaged values (Aw;) after the entire batch is calculated
* Mini batch approach

— When the number of inputs are very high (10%-10°), batch would be ineffective

— Random selection of m input vectors (m is a few hundred)

— Updates (Aw;) are calculated for each vector, and averaged

— Update is done with the averaged values (Aw;) after the mini batch is calculated

— Works efficiently when far away from minimum, but inaccurate close to minimum
10/1/2649 Requires reducing learning rate 29

How learning rate effects convergence?

Llu) A Ciw) & Liw] & Clu) &
= = = =
1 L1 il T
Learning rate too low Good learning rate High learning rate Learning rate much too high

Learning rate much too high

High learning rate

Learning rate too low

Good learning rate

.

10/1/2019 epoch 30

Most commonly applied gradient descent
methods V

* Algorithms with changing but not adaptive learning rate
— Stochastic Gradient Descent algorithm
— Momentum algorithm
— Nesterov momentum update

10/1/2019 .

Stochastic Gradient Descent (SGD) algorithm

 |Introduced in 1945

* Gradient Descent method, plus:
— Applying mini batches

— Changing the learning rate during the iteration

9/30/2019 32

Learning rate at SGD

e Sufficient conditions to guarantee convergence of
SGD:

> >) € is the learning
Z € — OQ, and Z €. < OQ. rate, also marked
—1 k—1 with 77 sometimes
* |n practice:
e = (1 —a)eg + e a=*%

e Afteriteration t, it is common to leave € constant

10/1/2019 33

Stochastic Gradient Descent algorithm

Algorithm Stochastic gradient descent (SGD) update at training iteration k
Require: Learning rate €.
Require: Initial parameter 6
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:13(1)? . 3.’Jlf,'(m)} with
corresponding targets y(i).
Compute gradient estimate: g < +-—-Vo > L(f(x'V:0),y?)
Apply update: 8 <+ 0 — cg
end while

where: L is the cost function

0 is the total set of Wl.(? (and all other parameters to optimize)
10/1/2019 ’ 34

Stochastic Gradient Descent algo

* This very elongated quadratic
function resembles a long canyon.

* Gradient descent wastes time
repeatedly descending canyon
walls, because they are the
steepest feature. a

* Because the step size is somewhat
too large, it has a tendency to
overshoot the bottom of the
function and thus needs to
descend the opposite canyon wall
on the next iteration.

9/30/2019

rith

20
10

0
—10

—20

30 .\I

N

—30 —-20 —-10 O

Momentum |

* |Introduced in 1964
* Physical analogy
* Theideais to simulate a unity weight mass

* |t flows through on the surface of the error
function

* Follows Newton’s laws of dynamics
* Having v velocity

* Momentum correctly traverses the canyon
lengthwise, while gradient steps waste
time moving back and forth across the
narrow axis of the canyon.

9/30/2019

10

0

e 1.6

—20

—30
—30 =20 =10 O 10 20

36

=P

Momentum II: velocity considerations i
The update rule is given by:

1 T . .
v+ av — Vg (— > L(f(=":0),y! >)) ,
T i=1

0+ 0 +v.

m

The velocity v accumulates the gradient elements Vg (% O L(f (az(i); 0), yl))) .
The larger « is relative to €, the more previous gradients affect the current direction.

Terminal velocity is applied when it finds descending gradient permanently:

ellgl
1 — «

9/30/2019 37

Momentum Il

Algorithm Stochastic gradient descent (SGD) with momentum

Require: Learning rate ¢, momentum parameter c.
Require: Initial parameter @, initial velocity v.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {a:(l)’ . }.’B(m)} with
corresponding targets y(i).
Compute gradient estimate: g < —Vg .. L(f(zV);0),4V)
Compute velocity update: v < av — eg
Apply update: 8 + 60 + v
end while

9/30/2019 38

Momentum demo

 What does the parameter of the momentum
method means, and how to set them?

— https://distill.pub/2017/momentum/
Why Momentum Really Works

9/30/2019 used, and creates Its 0Wn 0sC ns. Vwhat Is going on’/ 39

https://distill.pub/2017/momentum/

It calculates the
gradient not in the
current point, but
in the next point,
and correct the
velocity with the
gradient over there
(look ahead
function)

It does not runs
through a
minimum, because
if there is a hill
behind a
minimum, than it
starts decreasing
the speed in time.

9/30/2019

Nec<terov momentiim i1indate

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum

step
actual step

actual step

>
gtradiem Nesterov: the only difference...
step
vt = pvr-1 — €V f(0r—1 {+ pvr—1))
Derivative over function f
” Or = 01 + v
. = +161

What if we make the
learning rate adaptive as
well, not just the velocity?

-10 -=. denvative: df(p)/dp

® (.fip)) (-080-0.47) 40

Most commonly applied gradient descent
methods

e Algorithms with adaptive learning rate
— AdaGrad algorithm
— RMSProp algorithm
— ADAM algorithm

9/30/2019 41

. -JL:
AdaGrad algorithm \s
The AdaGrad algorithm (2011) individually adapts the learning rates
of all model parameters by scaling them inversely proportional to the
square root of the sum of all of their historical squared values

The parameters with the largest partial derivative of the loss have a
correspondingly rapid decrease in their learning rate, while
parameters with small partial derivatives have a relatively small
decrease in their learning rate

The net effect is greater progress in the more gently sloped directions
of parameter space

AdaGrad performs well for some but not all deep learning models

9/30/2019 42

AdaGrad algorithm

Algorithm The AdaGrad algorithm Remembers the
Require: Global learning rate ¢ entire history
Require: Initial parameter 6 evenly

Require: Small constant §, perhaps 107, for numerical stability
Initialize gradient accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {.’L’(l), ce
corresponding targets y(i).
Compute gradient: g < =Vg >, L(f(x";0),y")

Accumulate squared gradient: r < r +g © g
€

Compute update: Af < —5= 7 © g. (Division and square root applied

element-wise)
Apply update: 8 < 0 + Af
end while

RMSP algorithm

\)

The RMSProp algorithm (2012) modifies AdaGrad to perform better in the non-
convex setting by changing the gradient accumulation into an exponentially
weighted moving average

In each step AdaGrad reduces the learning rate, therefore after a while it stops
entirely!

AdaGrad shrinks the learning rate according to the entire history of the squared
gradient and may have made the learning rate too small before arriving at such a
convex structure

RMSProp uses an exponentially decaying average to discard history from the
extreme past so that it can converge rapidly after finding a convex bowl, as if it
were an instance of the AdaGrad algorithm initialized within that bowl

9/30/2019 44

RMSP algorithm

Algorithm The RMSPron algorithm
Require: Global learning rate €, decay rate p.
Require: Initial parameter 6

The closer parts of the
history are counted more
strongly.

Require: Small constant o, usually 107%, used to stabilize division by small

numbers.
Initialize accumulation variables » = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set {.’B(l), e ,az(m)} with

corresponding targets y(i).

7

Compute gradient: g < %Vg ZZ L(f(a:(i);), y(i))
Accumulate squared gradient: 7 < pr + (1 —p)g© g

Compute parameter update: A8 = — T ©q.
Apply update: 8 < 0 + A6
end while

(ﬁ applied element-wise)

ADAM algorithm (2014)

fr{\%ﬂ

* The name “Adam” derives from the phrase “adaptive moments.” e

* Inthe context of the earlier algorithmes, it is perhaps best seen as a

variant on the combination of RMSProp and momentum with a few
important distinctions.

 in Adam, momentum is incorporated directly as an estimate of the
first order moment (with exponential weighting) of the gradient.

e Adam includes bias corrections to the estimates of both the first-
order moments (the momentum term) and the (uncentered)

second-order moments to account for their initialization at the
origin

9/30/2019 46

ADAM
algorithm

Algorithm The Adam algorithm

s estimates the
gradient from the
history (moment)

r estimates the
curvature of the
gradient

Booth of them are
biased to reduce
anomalies at the
initialization

9/30/2019

Require: Step size € (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, p; and po in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant § used for numerical stabilization. (Suggested default:
10~8)

Require: Initial parameters 0
Initialize 1st and 2nd moment variables s = 0. r =0
Initialize time step £ =0
while stopping criterion not met do

Sample a minibatch of m examples from the trainine set {2 . 2™ with
(=] | bl

corresponding targets y(®.
AP . . . 1 — ’ ; :
Compute gradient: g < —Vg > . L(/ (:E(@):_ 9). y(l))
t+—1t+1
Update biased first moment estimate: s < pys+ (1 — p1)g

Update biased second moment estimate: r < por + (1 — p2)g © g
1—Spi

Correct bias in second moment: 7 < 177;}5

Compute update: A = —¢ ﬁié (operations applied element-wise)
Apply update: 8 < 0 + A0

end while

Correct bias in first moment: § <

Video comparing adaptive and non-adaptive
* Three optimizer types are methOdS

compared:
— SGD
— Momentum types

* Momentum

* Nesterov AG
— Adaptiv

e AdaGrad
e AdaDelta
* RmsProp
Adaptive ones are the fastest

SGD is very slow (stucked into
saddle point)

https://www.youtube.com/wat
ch?v=nhgoOulab6fw&t=306s

9/30/2019

https://www.youtube.com/watch?v=nhqo0u1a6fw&t=306s

Most commonly applied gradient descent
methods

e 2" order algorithm
— Newton algorithm

9/30/2019 49

Newton’s algorithm

Algorithm Newton’s method — with objective
- e L(f(-’f(z); 0). ’y(z))-

m

Require: Initial parameter 6y
Require: Training set of m examples
while stopping criterion not met do
Compute gradient: g «— Vg >, L(f(zc@; 0), y@)
Compute Hessian: H + L Vg >, L(f(zD;0),y")
Compute Hessian inverse: H '
Compute update: A@ = —H 'g
Apply update: 8 = 6 + A0
end while

9/30/2019

50

Newton’s algorithm

* Typically not used, due to the computational complexity

* Parameter space much higher than first order (where it is
already very high)

9/30/2019 51

Back propagation

 We have seen last time how to calculate the gradient in a
multilayer fully connected network using back
propagation

— The introduced method was based on gradient descent method

 However, being able to calculate gradient, we might
select any of the above methods, which leads to orders
of magnitude faster convergence

9/30/2019 52

